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Preface

Solar energy is rapidly becoming a permanent fixture to the American
way of life. Govermmental research contracts, literature, businesses,
and individual interests alike have literally skyrocketed since the 70's,
and there is no end in sight. Likewise, my own interests in solar energy
have progressed over the past few years due in part to the rising cost
of energy. But more than this-I think-I really wonder if the marvelous
mother earth who has so well provided for mankind since earliest history
1s not waning under the strain of our unquenchable and relentless gquest
for energy. What has taken her eons to produce, it has taken us only a
few generations to use. How long can she sustain us or our progeny?

She is patiently and silently awaiting relief.

Our energy consumption has been and will continue to be weighed.

It is only a matter of time before the balance tips and decides our
destiny. This feeling more than any other has left me with a challenge-
a_challenge to conserve energy, to explore new alternatives, and to

find a better way to meet our energy needs. I hope to pass along this
challenge to you as well,

I wish to thank Dr. James Hitchcgck, my advisor, for his ideas, lead-
ership, and patience. Graditude is also extended to Mr. William Baker
and Mr. Harold Cannon for their technical support. A special thanks goes
to my two children, Danille and Carrie, for putting up with so many
fatherless days, and a special thanks to Vicki, my wife, who offered

continual encouragement and labored tirelessly typing this manuscript.

Dana Woodrum
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"~ Abstract

, Five tests were conducted on a 4X4 foot liquid-heating flat plate
solar collector for:

(1) Internal heat transfer coefficient-with and without
turbulators

(2) Flow distribution

(3) Bond conductance-clamped and woven fins

(4) Long wavelength transmittance of Kalwall

(5) Overall loss coefficient-heat removal factor product.
Mean values of the internal heat transfer coefficients ranged between

98-114 B/hr-ft2~F for tubes without turbulators. Values as high as

522 B/hr-ft?-F were obtained with turbulators. The flow distribution was
determined to be satisfactory if turbulators were left in the risers. |
Non-uniforﬁrflow occurred without them as evidenced by temperature 1
differences as high as 30 F between the collector inlet and tube wall

temperatures (measured midway between the headers). Bond conductance

values ranged from 18.88 B/hr-ft-F to 1.57 B/hr-ft-F for the clamped and

woven fins, respectively. The transmittance for .025 inch Kalwall at

long wavelengths was determined to be on the order of five percent. The

overall loss coefficient was not successfully measured, but based on a

previously determined value of it, the heat removal factor as a function

of flowrate was compared for all configurations.
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EXPERIMENTAL STUDY QF THE THERMAL PERFORMANCE PARAMETERS

OF A LIQUID-HEATING FLAT PLATE SOLAR COLLECTQR
I  Introduction

Energy is a key ingredient to any industrialized society. Whether
it be from petroleum, natural gas, wood, nuclear, or solar, energy com-
mands ever increasing attention of the world's leading nations. As
current sources become exhausted through use, waste, political crises,
or the synergisti: effects of population and industrial growth, the de-
mand for energy will undoubtedly forge a new life style for people and
nations.

It has already begun in the United States, Speed limit reductions
to 55 mph, federally sponsored energy conservation programs, tax credits,
gasoline lines, gas rationing plans, higher prices for commodities, and
acute increases in energy costs are all ever present reminders that a
change in life style and new challenges lie just around the corner.
Thus, energy-a long standing premium to the small businessman and manu-
facturer alike-is rapidly becoming a premium to the individual consumer.

Solar energy-freely available and exhaustless-is a form of low grade
thermal energy which can meet such needs as space heating, food drying,
hot water supply and others for individuals and businesses. Further-
more it requires no hauling, refining, mining, drilling, or cleaning-and
it is pollution free. The user simply traps it with the solar collector
and transports it through a system of pipes or air ducts for immediate
use or storage. The major stumbling block to this seemingly simple task

18 one of economics. Thus, solar energy designers are constantly striving
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for efficient and maintenance free systems.

As energy is a key ihgredient to a society efficiency is the key in-
gredient to any energy conversion system. Since solar collectors are the
central components to any solar emergy conversion system, the purpose of
this study has been to investigate the thermal performance parameters
which combine to define the efficiency and thermal worthiness of one. It
has been limited to the liquid-heating flat plate type. Two plates-a
clamped and woven fin-have been studied for bond conductance character-
istics. The effects of an increased internal heat transfer coefficient
bhave been studied. Flow distribution and long wavelength transmittance
characteristics have also been examined. Lastly, the overall loss coeffi-
cient and the effect of flowrate on collector performance was investigated.

Previous work by Groves (Ref 5) examined the overall loss coeffi-
cient and collector efficiency by irradiating the collector with a solar
simulator. In this study, however, the collector overall loss coeffi-
cient, internal heat transfer coefficient, bond conductance, and flow
distribution were all evaluated by separate heat loss tests. The inter-
nél heat transfer coefficient test compared results with and without
turbulators inserted. The flow distribution test gave an assessment of
the validity of the uniform flow assumption instrumental to the develop-
ment of the energy equation. The bond conductance test compared the
effectiveness of the two types of absorber plates. The long wavelength
transmittance test of the Kalwall covers showed how Kalwall performed in
obstructing far infrared radiation. Lastly, the overall loss coefficient-
heat removal factor product test attempted to determine the overall loss
coefficlent value and study the effect of flowrate on the collector's

thermal performance.
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I1 Flat Plate Collector Theory and Description

Solar collectors are the essential components to any solar energy
conversion system. Although collectors are not unlike heat exchangers
in that energy is transferred to a fluid, they have unique functions,
problems and characteristics. The purpose of a solar collector is to
absorb radiant energy from a distant source-the sun-and transfer that
energy to a medium—-air or water-for transport to a storage facility
or for immediate use.

Many practical problems are encountered trying to implement this
simple function. For instance, before the collector can operate, radiant
energy has to be present. The incident energy outside the earth's thin
layer of air is essentially constant beam radiation. But, after pass-
age through the atmosphere, the beam radiation usually undergoes con~
siderable absorption, reflection and scattering such that the useful
radiation at the surface is significantly less than that orfginally
available and is characterized by both beam and diffuse components.
Tﬁe problem of characterizing and predicting the available radiation
has received considerable attention in the past, and, fortunately,
predictions can now be made to a satiéfactory degree.

The collector must be able to absorb both the beam and diffuse
components of radiation and transfer it to the fluid with as small a
loss as possible. This inherently means high fin efficiencies, bond
conductances, and heat removal factors-terms to be defined later. It
also means small loss coefficients and low absorber plate operating
temperatures. A good design has a selective absorber plate (i.e. high

absorption characteristics in the short wavelength range and low
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Transparent Cover
Absorber /”- Frame
Plate / —
Header
Tubes
AN Insulation

Figure 1 Basic Components of a Liquid
Flat Plate Collector
emittance in the long wavelength range) as well as a cover system which
transmits most of the solar energy and very little far infrared radia-
tion. All these factors combine in the design of a solar collector to
determine the overall thermal performance.

Solar collector deéigns are characterized by application, fluid
transport medium, and geometry. Systems may be liquid heating or cool-
ing, free or forced air systems, hybrid systems, or systems with concen-
trating collectors. One simple type is the liquid heating flat plate

collector designed for residential hot water systems application.
'

General Description

The basic components of the liquid heating flat plate collector shown
in Figure 1 are the absorber plate, covers, insulation, tubes, and frame.
Each component has a special purpose. The transparent covers produce the
80 called greenhouse effect by permitting short wavelength solar radiation
to pass through to the absorber plate but allowing very little long wave-
length energy to be re-radiated. It also resists heat transfer losses

by convection. The absorber plate collects the energy and conducts it




to the liquid filled tubes. It should have sufficient thickness and high
conductivity so that fin ;fficiencies are 90 to 95 percent. Economic and
installation considerations may preclude much higher values than these.
The tubes and headers form the transport path of the fluid. The tubes
must be firmly bonded to the absorber plate and have high internal heat

transfer coefficients to maximize the heat transfer from the plate to the E

liquid. The pipe system must also be sized such that the pressure drop
considerations result in uniform flow, otherwise, local hot spots on the
collector develop and degrade performance. Lastly, the frame offers archi-
tectural style, rigidness, and also serves to reduce heat loss.

Figure 1 shows a parallel flow type collector, but others such as
serpentine flow types are available. There are also many ways of forming
the bond between the fins and tubes. Several ways are examined later.

The collector used in this investigation was a liquid-heating flat
plate collector similiar to that shown in Figure 1. The absorber plate
was a 4X4 foot, .035 inch thick steel sheet plated with copper to
prevent corrosion. The absorber plate was made with smaller platelets each
four inches wide and two feet long. Each platelet was crimped along its
axis such that the 3/8 inch outside diameter copper tubes snapped
snuggly into position. A General Electric bonding cream (Silicone
Insulgrease G-624) was used for the bonding material to eliminate air-

space and enhance heat transfer through the bond.

The twelve parallel tubes were connected at each end to a 7/8 inch
diameter copper header. It will be shown later that the header size
should be larger for flow considerations. The tubes also had turbulators
inside all along the four foot length. They were constructed of 1/4 inch

wide, .025 inch thick strips of brass with a 180 degree twist every inch.
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a) End View b) Top View

Figure 2 Schematic of the Woven
Fin Configuration

The overall dimensions of the frame were 6 1/2 X 55 1/2 X 51 1/2
inches. The back side of the frame was constructed of 1/4 inch plywood
with the remainder made of 3/4 inch thick pine board. There were two
partially transparent Kalwall Sunlite covers spaced 3/4 inches apart and
3/4 inch separation between the second cover and the absorber plate.
Below the absorber plate 3 1/2 inches of fiberglass insulation with the
paper side up was installed to reduce heat loss.

The copper coated platelets which made up the absorber plate were

coated with a Nextel 3M 101-10C highly absorbing flat black paint often
used in solar collectors. Refer to reference 5 for a more complete
description.

An alternate configuration of the absorber plate was also examined.
It consisted of six inch wide strips of .028 inch thick ALSI 1006 steel.
Each strip was 50 inches long. A total of eight strips were required to
construct the alternate plate. Each six inch strip was alternately woven
between the tubes to increase contact pressure and hence bond conductance

between the fin and tube. Figure 2 18 a schematic of the woven fin plate. é




Energy Balance Equation and Derivation

The equation defining the useful energy gain of a flat plate collec~
tor is a steady state equation which can be expressed in a variety of

forms. 1In its most simple and useful form (Ref 2:125) it is written as:

Q, = AF [1tme) - vy e - )] (1)
where Ac = collector area
FR = heat removal factor
t = ambient temperature

(-]

UL = overall loss coefficient (plate to ambient)
t = inlet fluid temperature

I = golar insolation (beam and diffuse)

(fa) = effective transmittance-absorptance product.

The solar insolation may be either measured or predicted, but since
this quantity is usually subject to considerable variability due to local
weather and pollution conditions, a long term average hourly value is
usually used. If the collector is tilted I changes accordingly. The
effective transmittance-absorptance product accounts for reflected and
absorbed radiation of the cover system, the absorption of the absorber
plate, reduced energy losses of the collector due to cover temperature
increases when radiation is absorbed, and dirt and shading factors.

A number of simplifying assumptions are employed for the determina-
tion of the factors appearing in Eq (1). The most important of these
are:

(1) Steady state performance

(2) Uniform flow

(3) One dimensional heat flow through the back, covers, and edges

3
(4) MNeat losses through the front, back and edges are to the same 4
ambient temperature 1
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Figure 3 Absorber Plate and Tube Dimensions
(5) Temperature gradients in the direction of flow and between
tubes can be treated independently.
A more complete description of the assumptions is given by Duffie and
Beckman (Ref 2:125).

With these assumptions in mind, the development of the collector
equation proceeds through several stages starting with an energy balance
on the absorber plate fin. A negligible temperature gradient in the flow
direction is also assumed. The fin is represented as in Figure 3.

Writing an energy balance for the differential element of Figure 3
and employing Fourier's law of heat conduction with appropriate bound-
ary conditions, the temperature gradient along the x direction of the fin
can be obtained. Using this result, again employing Fourier's law at
the fin base, and adding a term for the energy absorbed directly by the

tube, the useful energy gain can be described as:

Q- nY[D + (L - D)F] [(1"&)1 - U (g - R.’] 2)
vhere n = number of tubes
Y = fin length tanh [(v, /k8) S(1. - D)/2]

¥ = fin efficiency = (UL/RG) .S(L - D)/2
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.- The energy from Eq (2) delivered at the fin base must negotiate the
bond and tube internal heat transfer resistances before arrival at the
fluid. Neglecting the tube wall resistance and using Cb from Appendix C,

the overall resistance may be written as

+L (3)

It is desirable to write the collector equation in terms of measur-
able quantities such as the fluid inlet temperature, tfi’ as opposed to
the fin base temperature, tfb' Using a local fluid bulk temperature, tf,

for the moment it can be shown that

Q, = ovLF' [(@)1 - U (¢, - t)] (4)
where
LF' = I/UL
1 1 1
+ = 4 —
UL[_b + (L - D)Pj cb 'uDihi

F' is called the collector efficiency factor. The remainder of the
derivation proceeds assuming the fluid bulk temperature varies exponen-
tially along the tube. Writing the energy balance for the differential
tube element shown in Figure 4, it is easy to show that the temperature
[ varies according to

t -t - (fB)1/U
tey =t - (TRT/U

= exp(-U, LF'y/WC ) (5)
£1 L P

The final form of the collector equation is obtained by equating the

actual energy gain of the collector as measured by the inlet and outlet

sk

temperatures and the total mass flowrate to the gain the collector would




(ta)1dy
C——™1
I I ot
wcpt .--_.r —|__..' WCp(t + gg,dy)
L__—J

UL(t - tm)dy

Figure 4 Energy Balance on the
Tube Fluid Element
see if the absorber plate were at the fluid inlet temperature. We also

employ Eq (5) at y = Y:

Q - AcFR[(T_“)I - Uy (tgy - tm):'

wvhere WC
F, = —E[1 - exp(-U A F'/WC ) (6)
R Lc P
AU
cL
FR = collector heat removal factor.

With this equation the useful energy gain of the collector is con-
veniently expressed in terms of the known inlet fluid temperature. But
as a consequence of using the inlet fluid temperature, the term describing
the collector losses in Eq (1) decreased since tfi is smaller than the
effective absorber plate temperature. The effect of FR is to compensate
for this decrease by reducing the net useful energy gain of the collector

from its value using t to what it actually is using a fluid temperature

fi
that increases in the flow direction.
As seen by Eq (6), FR is a function of three variables (F', UL’ and

W). The dependency, however, is weak for all except the mass flowrate, W.

So in the limit as the flow approaches a large number, where the diffcrence

10
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between the inlet fluid temperature and the mean plate temperature
approaches zero, there is no required compensation. Under this con-
dition FR approaches, but does not surpass, the numerical value

of the collector efficiency factor. However, as the flowrate decreases,

et o e et

the mean plate temperature and inlet fluid temperature difference in-

crease; collector losses decrease and compensation is required. FR is
4

reduced accordingly for this situation,

Collector Overall Loss Coefficient

The overall loss coefficient appearing in Eq (1) can easily be eval-

uvated by employing classical techniques. Since it is desirable to de-

velop this concept to simplify mathmatics, consider the thermal network

of a two cover system shown in Figure 5.
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Figure 5 illustrates the simplicity of the heat transfer process
when one dimensional heat flow is assumed. In reality three dimensional
temperature gradients exist, but as the collector area increases these
effects become secondary-allowing the one dimensional heat flow assump-
tion.

Some of the incident radiation, I, is lost by reflection from the
covers. The portion that finally is absorbed by the plate is the product
of the effective transmittance-absorptance product (T@) and I. The
portion that is lost occurs by all three modes of heat transfer. Re-
sistances Rlc thru ch are convection resistances. er thru R3t are
radiation resistances. This path represents heat lost from the plate
to ambient by sucessive radiation from one cover to the next, etc. A
third path is radiation from the plate directly to the sky considering
the long wavelength transmittance of the cover system. If the cover
system is opaque, zero heat loss will occur through this path. Conduction
and convection losses out the back side of the collector are also shown
by the path containing Rkl and Rac'

After computing the numerical values of the resistances the entire
network can be simplified to the equivalent network shown in Figure 5b.

The relative magnitude of the 1o§s terms for the convection and
radiation paths is a function of the plate emissivity and the number of
covers. Duffie and Beckman (Ref 2:131) summarized these two heat trans-~
fer modes for a couple of configurations. Results are reproduced in
Figure 6 and show that depending on the collector both radiation and
convection losses can be significant.

The calculation of the overall heat loss is necessarily an iterative

process but requires only one to two iterations at most. Xlien (Ref 3)
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(Ref 2:131)
Figure 6 Convection and Radiation Loss Terms for Plate Temperaturcs
of 212 F, Ambient and Sky Temperature of 50 F, Plate
Spacing of 1 inch, 45 Tilt and Wind Speed of 16.4 ft/sec
(A1l heat flux terms in B/hr-ft)
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- developed an empirical relationship to compute the top loss coeffi-
cient as a function of mean plate temperature. It greatly simplifies
the otherwise iterative techniques required. 1t appears below for

convenience as derived for a tilt angle of 45 degrees:
-1
. 31 +-L
(344/Tp)[}Tp T/ 4 g] : b

Ut(AS) =

2 2
g (Tp + Ta)(Tp + Ta ) (7

e + .04258(1 ~ ¢ Y '+ {(m+£~1)/e| -1
[+ ossva -]+ ¢ /e

The coefficient as a function of tilt angle S is then

+

Ut(S) Ut(45) 1 - (5 - 45)(.00259 - .OOIAAEPi] (8)

= number of covers
= (1 - .4+ 5x1o"*hw )(1 + .058N)

|
|
= emittance of glass covers i

where

= plate emittance

ambient temperature (deg K)

L- 2 IR - -

= plate temperature (deg K)
= 5.7 + 3.8V (W/w%C)

= wind velocity (m/sec)

485‘0-1'-!(')(':?"2
"

A complete analytical treatment of the overall loss coefficient is given

in Appendix D.

Mean Plate Temperature

The overall loss coefficient, U, , is based on a mean plate temperature.

L’
To arrive at an expression for the mean plate temperature in terms of
measurable quantities, Eq (5) is integrated over the length of the tube

to obtain a mean fluid temperature:




1 Y
ten - Yo t(y)dy 9)

Using the heat removal factor, Eq (1), and performing the integration,

Klein (Ref 3) showed that the mean fluid temperature is given by

Q /A F
t, =t +-2-Cf -_R (10)
fm fi

U, F F!

LR

Strictly speaking the temperature difference between the fluid and the
tube will not be constant, but in certain cases this condition is
approached. Therefore, the mean fluid temperature and mean plate tempera-

ture are approximately related by

tpm - tfm = QuRpf (1)

where Rpf is the heat transfer resistance between the plate and the fluid.
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III 1Internal Heat Transfer Coefficient Test

The design of flat plate solar collectors was greatly simplified and
assisted with the evolution of Eq (1) and the corresponding plate-fin
efficiency, collector efficiency and the heat removal factors. Many
of the related parameters are geometrical in character and can be accu-
rately defined. The internal heat transfer coefficient, however, is
much more difficult to assess with certainty, but its effect on the col-
lector efficiency factor can easily be demonstrated.

Neglecting the tube wall resistance the expression for the collect-

or efficiency factor of the fin and tube flat plate solar collector from

Eq (4) is
. 1/UL
1 I S N
LIEIL[D + (L - D)F] Cy nDth

Assuming, C, = 18.88 B/hr-ft-F, 1.57 B/hr-ft-F

U - .65 B/hr-ft2-F, 1.3 B/hr-ft2-F

é§ = .035 inch

L = 4 inch

D = 7/16 inch

D, = 5/16 inch

k = 26 B/hr-ft-F

the dependence of the collector efficiency factor, F', on the internal
heat transfer coefficient can be shown as in Figure 7. Two overall loss
coefficients and two values of bond conductance have been inciuded as pa-
ameters. The loss coefficient of .65 B/hr-ft2-F is the nominal value for

the two cover configuration. Elimination of ome of the Kalwall covers

nearly doubles the loss coefficient, so a value of 1.3 B/hr-ft2-F was also

16
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_ plotted. The two bond conductances are the experimentally determined

average values for the clamped fin and tube and the woven fin and tube
respectively.

Figure 7 shows there is no significant improvement in the collector
efficiency factor for internal heat transfer coefficients greater than
50 B/hr~ft2-F. Additionally, computations can show that a 10 percent
error in hi of this order of magnitude produces only about a one per-
cent change in F', so extreme accuracy in the estimation of hi in this
range is not essential either.

The functional dependence of the bond conductance als¢ shown in
Figure 7 has been shown by Whillier (Ref 16:96). That data shows im-
provements in bond conductance beyond about 20 B/hr-ft-F are questionable
considering the implementation troubles likely to be encountered trying
to exceed this amount.

Therefore, from these considerations it would seem there is little
necessity to design a collector with bond conductances and intermal
heat transfer coefficients exceeding 20 B/hr-ft-F and 50 B/hr-ftz-F
respectively. Nevertheless, tests were conducted in order to assess the

actual values for different configurations.

Test Description and Procedure

Figure 8 depicts the experimental test set up for determination of
the internal heat transfer coefficient. Details of the tube-fin are
shown in Figure 9.

Wadding was used at both the inlet and exit of the tube to promote
fluid mixing and obtain true bulk temperature measurements with thermo-
couples Tl and T10. Thermocouples T2 thru T8 were soldered to the under-

side of the tube and equally spaced along the length. The submersible

17
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Figure 7 Effect of the Internal lleat Transfer Coefficient and

Bond Conductance on the Collector Efficicncy Factor
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Figure 9 Heat Transfer Coefficient Test Specimen
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. heater provided heat input to replace that lost during circulation.
Metering clamps and flow meter were used for flow adjustments. Actual
flowrates were measured using a pan, scales, and timer. The recommend-
ed collector flowrate (Ref 5) is about 3.3 1bm/min which is equivalent
to 16.5 1bm/hr/tube, so the experiment was conducted for flowrates be-
tween 4.64 lbm/hr and 20.94 1bm/hr. Steady conditions were obtained for
each reading, but the inlet fluid temperature, Tl, varied between
131-159 F depending on the flowrate. A summary of the data taken is
given in Appendix A.

The test was conducted by first heating the water while it was
being circulated to facilitate equilibrium conditions. The water heat-
er was thermostatically set at or near 145 F for automatic shut off.
However,'with the submersible heater steady temperatures as high as
159 F were obtained for some readings. After heating, the flowrates
were set at small values first, and the system was allowed to run until
temperatures reached equilibrium, Once equilibrium was achieved temper-
ature measurements and flowrates were recorded. The system was then set
to another flowrate. The test was conducted twice-with and without
turbulators. Both times the hot water was pumped up from the bottom

of the tube and fin.

Results

To compute the local Nusselt number it is necessary to obtain the
local bulk temperature. Because of the small diameter tubes it was not
possible to measure this quantity, so recourse was made to predicting
it. Under high flowrate conditions the bulk temperature will almost
vary linearly along the tube, but strictly speaking it is more nearly

approximated by an exponential function. Assuming the fin overall loss

20
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where W
U
L

t
tf(x)
t
t

(x)

w
k
Y

fi

The derivation of these expressions is given in Appendix A.

i

coefficient remains constant the bulk temperature is given by

tf(x) = (tfi - tn)exp(—ULx/WCp) +t

The local Nusselt number was computed by

r o wfe, -]
* e (0 - £ ()]

mass flowrate

fin loss coefficient
fin width

ambient temperature
local fluid temperature
local wall temperature
thermal conductivity
tube length

inlet fluid temperature.

i ams e S

(12)

(13)

Figures 10 and 11 plot the measured wall temperature and computed

bulk temperatures for the lowest flowrate conditionms.

Since the bulk

and wall temperatures vary the most along the tube under low flow con-

ditions the plots serve as an indication of the validity of a lincar

bulk temperature variation assumption; Figure 10 which is the tube with

turbulator shows that a linear assumption is probably not adequate under

. low flow conditions.

variation will become more linear.

But at higher flowrates the bulk temperature

In contrast Figure 11 shows that the

linear assumption when turbulators are not present is not too bad even

for the lowest flowrate condition.

From this consideration alone it

| | appears the turbulators have a significant influence on the heat trans-

fer characteristics.
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Figure 11 Wall and Fluid Bulk Temperatures
Along the Tube Without Turbulators
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The Reynolds number varied between 100 and 1600 for the entire
test so the flow condition would appear to be laminar over the entire
range. But a plot of the local Nusselt numbers shown in Figure 12 does
not substantiate this conclusion even without the turbulators. With
the use of turbulators mean Nusselt numbers increased significantly
with flowrate, and local values increased in the flow direction-except
for the lowest flowrate condition. Without turbulators mean Nusselt
numbers increased only marginally with increasing flow. Local values
were fairly constant over the length except at the ends where increasing
values were noted.

Under laminar flow theory given by Kays (Ref 7:102-145) which neg-
lects free convection effects, a reduction in the local Nusselt number
occurs along the flow direction until fully developed velocity and temper-
ature profiles result. Then the local Nusselt number remains constant.
Since this condition was not typical of the results shown in Figure 12,
it was suspected that significant free convection effects were present.

This seems to be especially evident for the tubes without turbulators
for three reasons. First, the Nusselt numbers are nearly constant along
the length of the tube but at a higher value than 4.34 which theory pre-
gcribes for a constant heat flux solukion. Secondly, the Nusselt number
increases slightly over the last half of the tube-an effect which occurs
only with increased mixing action. Thirdly, at the highest flowrate of
20.94 1bm/hr the local values begin to behave according to theory by drop-
ping off during the first half of the tube-as though free convection was
not significant.

With turbulators the Nusselt numbers were much higher-ranging from

10 to as high as 20. And, since the local values increased in the flow
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direction for all but the.lowest flowrate, it was evident that the flow
was turbulent inspite of the low Reynolds numbers. It appears that
i momentum changes induced by the twisting action of the turbulators cou-
pled with any natural convection forces present helps promote early

transition and increasingly turbulent flow behavior.

Discussion

An order of magnitude analysis of the boundary layer (Ref 10:357-
358) helps to put the relative magnitudes between free and forced con-
vection forces into proper perspective. The result of such an analysis

says free convection is significant if the ratio of Grashof to the

square of Reynolds number is of the order omne, i.e.,

Gr/Re?2 = 1 14)
The higher the ratio the more significant free convection becomes. For
tubes with turbulators this ratio varied between .051 at the lowest flow- ‘
rate to .0013 at the highest-indicating progressively weaker free con- 4
vection effects with increasing flowrate. Without turbulators this ratio

ranged from .805 to .043 indicating strong free convection effects for

all but the highest flowrates. Based on this simple analysis it can be !
concluded that combined free and forced convection effects existed for
the lowest flowrate conditions and probably so for the modest flowrates
as well.

Heat transfer influenced by the simultancous interaction of gravita-
tional and other forces such as pressure gradients has been investigated
by various sources in the past (Ref 8, 11, 12, 13), but a complete
knowledge in this field is lacking because the direction of flow cnters

the problem as well as the parameters usually defining frce and forced
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convection separately. Additionally, all sources quoted here conducted
investigations either under constant heat flux or constant wall temp-
erature situations, so their results may not correlate well with the
present study since neither situation was typical of test conditioms.

The literature does indicate however that transition can be expected
tc vccur much more rapidly under low Reynolds number conditions with heat
transfer than isothermal or adiabatic flow. For instance, experimental
work by Kemeny and Somers (Ref 8:339-345) on constant heat flux vertical
tubes indicated that transition took place at a Reynolds number of about
200 for water. For oil the transition was much earlier-occurring at
Reynolds numbers as low as 10. Metais and Eckert (Ref 12:295-298) con-
ducted a survey and summarized a portion of the available literature on
combined effects in 1964. That summary is given for vertical and hori-
zontal tubes in Figures 13 and 14.

Combinations of aiding and opposing flow as well as uniform heat
flux (UHF) and uniform wall temperature (UWT) are shown. It is fairly
easy to anticipate the results shown in these figures. A large Reynolds
number implies a large forced flow velocity; the larger the value of the
Grashof-Prandtl product, the more one would expect free convection effects
to prevail., And of course, in between; is the mixed region where both
effects are significant,

Oliver (Ref 13:335-350) studied natural convection effects on uni-
form wall temperature horizontal tubes and concluded that the mean
Nusselt number could be satisfactorily represented by

1/3

14
u .
b l
Nu =|.2 .75
u [p] 1'75l—f2“‘ + .ooss(crmrrm) (15)
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‘ where

= viscosity of fluid measured at the average of initial
and final bulk values

¥ = viscosity of fluid measured at the wall temperature

sz = WCp/kY

Grlll = Grashof number based on tube diameter and difference
between film temperature (the average of the wall and
average bulk temperature) and wall temperature

L/D > 70

Provided as comments to Eckert and McComas' work on a horizontal

uniform wall temperature tube (Ref 11:147-153), Thomas and Brown proposed

14 173
U ¢ 473
Nu = [_b] 1.75‘82 + .012(Gz Gr 173) l (16)
-uw m m m

This correlation supposedly fits water data to within + 8 percent cver a
range of Reynolds numbers of approximately 200-1500 together with a

Grashof number range from 4 X 10% to 40 X 10% and varying L/D ratio.

Baker (Ref 1:78-85) also studied heat transfer characteristics at low

Reynolds numbers (for a uniform heat flux condition) on tubes similiar
to the type used in tube-in-strip collector plates. Under this type ap-
plication, the temperature could be significantly higher at the fin-tute
Junction than at either the top or bottom of the tube. Baker concluded
that this circumferential temperature variation promoted additional mix-
ing action over and above the natural convection forces reported by
(Ref 11, 13) and recommended that Eq (15) be modified by multiplication
of a dimensionless temperature ratio, Atmax/Atmin (which he failed to
define), to account for it.

The results of Baker's experiment are shown in Figure 15a and b.
Four local Nusselt numbers were computed along the length of the hor-

izontal tube for {ifteen flowrates. Tube wall temperatures were taken
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at the fin-tube junction and the fluid bulk temperature was assumed
to be linear between the inlet and exit, but thermocouples were insert-
3 ed into the flow field at four stations to measure local bulk tempera-

tures for fluid property calculations.

The experimental data shown in Figure 15a is compared with a theo-
retical treatment given by Kays (Ref 7:102-145). Kays' treatment neglects
the gravitational forces and is applicable to a constant heat flux problem
only. At the higher flowrates a decrease in the local Nusselt number
occurs along the tube-a condition predicted by theory neglecting gravi-
tational forces. At lower flowrates, however, the pattern is reversed.
Baker concluded that this behavior was caused by the increasing in-
fluence of gravitational forces at the lower Reynolds numbers. It
appears that at the end of the tube for the low flow conditions the
heat transfer reaches a fully developed condition resulting in a nearly
constant Nusselt number.

Figure 15b compares the experimental arithmetic mean Nusselt number
with mean values as computed by Oliver's correlations. This comparison
was the basis for the proposed additional term in Oliver's equation and
Baker attributed the difference to the variation of circumferential heat
flux. '

None of the previous work cited here really typified the test condi-
tions since neither a constant wall temperature, constant heat flux,
vertical or horizontal tube was used. The experimental mean Nusselt
numbers have, nonetheless, been compared to Oliver's correlation, Eq (15),
and that of Thomas and Brown, Eq (16). Comparisons could not be made
with Baker's correlation since his recommended temperature ratio was

not defined. The comparison was made with and without turbulators in
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Figure 16. The experimental results were obtained as an arithmetic
average of the local values, Correlation equations were calculated with
arithmetic mean values of Grashof, Prandtl, and Gratz numbers.

As expected no correlation existed for the tubes with turbulators
since this test set up did not typify past work. Results did correlate
well without the turbulators, however, inspite of a non-uniform wall
temperature and inclined tube. What is more important, as far as the
application to the solar collector, is the resulting value of the inter-
nal heat transfer coefficient. It turns out that the minimum mean value
of the internal heat transfer coefficient is 98 B,hr-ft2-F for water
at 150 F. This is clearly an acceptable value considering the results
presented in Figure 7. So it must be concluded that the turbulators
provide only marginal improvement in the thermal performance of the

collector.
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IV Flow Distribution Test

In theory the collector heat removal factor can be satisfactorily
computed for the flat plate solar collector. This calculation assumes
uniform flow, so the accuracy is dependent upon the actual flow condition.
Therefore, the purpose of this test was to examine the real flow condi-~
tion. Such a test could normally be conducted by installation of flow
measuring devices directly into the lines, but small inside line diameters
and flowrates rendered this approach unacceptable. Instead, an array of
thermocouples was used to measure temperature differences which in turn

were used to draw conclusions about the flow situation.

Test Description and Procedure

Figure 17 is a schematic of the test set up. This same set up was

used for the U F_ product test which is covered later. The collector

LR
' Refill
J//r- Header Flow Submersible {
Cut ‘L-——l
Heater
/' Riser 1 Water
Heater
Flow In
g
Collector Valve
8
Insulated Plastic Hose
o LeO e

Figure 17 Test Set Up for the Flow Distribution
and ULFR Product Test
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. was tested at a 45 degree inclination and the liquid was circulated

through an insulated plastic hose as an open loop system. This per-
mitted flowrate measurement and control with pan, scales, and valves.

The water was initially heated to approximately 140 F with the gas
fired water heater while the pump was running. The submersible heater
was used to minimize temperature transients and remained on during heat
up and all subsequent testing. It was possible to visualize the flow
distribution by measuring the tube temperatures. For instance, if all
tube temperatures were equal except one, then the flow in each tube was
the same or nearly so-except for the one at a different temperature.

A study of the flow distribution was made with and without turbu-
lators so two sets of readings were made. For both, the thermocouples
were installed on the underside of the tubes mid-way between the headers,
and the inlet and exit bulk temperatures were recorded. The data is

listed in Appendix B.

Results with Turbulators

The test was conducted at two flowrates-2.0 and 4.125 lbm/min. The
results are presented in Figure 18. The first and second independent
variables are the riser number and the flowrate, respectively. The de-
pendent variable has been defined as the difference between the riser
and collector inlet temperature. Thus, as the flowrate increases the
dependent variable also increases and vice versa. In addition to flow
visualization, the dependent variable also permits the location of hot
spots on the absorber plate.

To some degree the results of the test can be anticipated. For in-

stance, wve expect the temperature difference to decrcase with increasing
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Figure 19 Calculated Pressure Distribution
in Headers of an Isothermal
Absorber Bank
flowrate and this happened. It was also apparent that the relative flow
distribution remained the same for the two flows. This was evident by
the shape of the curve. It was also evident by the large temperature
differential of 9.7 F for a flow of 2.0 1bm/min, and a temperature
differential of 5.3 F for the other flow, that riser number 12 had the
least flow. As seen there was very 1ift1e variation between the re-
maining tube temperatures-indicating a satisfactory flow pattern.

Dunkle and Davey (Ref 4) studied the flow distribution in parallel
tubes such as this and showed that under symmetrical conditions the pres-
sure drop situation was like that shown in Figure 19. The rate of change
of pressure drop was greatest at the collector inlet for the lower hecad-

er and greatest at the exit for the upper header. The rates approached

one another and became equal at the center of the hecader. Also note that

36




. pressure drop differences were greatest at the ends. The implication was

obvious: high flow at the ends and lower flow in the center portion.
This would be the expected outcome of the data in Figure 18. Since
results were not symmetrical it must be concluded that the data actually
shows this particular collector's pressure drop characteristics. Fur-
thermore, since the temperature differences were not excessive at the
recommended flowrate of about 3.3 lbm/min, it was concluded that computed
values of F_ were typical of the actual performance value, and that the

R

actual flow condition was acceptable.

Results Without Turbulators

The flowrates varied from .436 lbm/min to 6.708 1bm/min while
the inlet temperature was held between 123 to 138 F. Without the turbu-
lators the results were appreciably different as Figure 20 shows. As
before, the first and second independent variables were the riser number
and the flowrate, respectively. Also here, the dependent variable was
defined as the difference between the riser and collector inlet tempera-
ture.

The results presented in Figure 20 show a striking lack of flow
uniformity. At lower flows the water simply passed through either the
first or the first couple of risers. Increasing the total flow caused
increasing flow in successive risers. This was evident by the decreas-
ing temperature differential of the dependent variable. The pattern
continued until 6.708 1bm/min where the temperature differentials were
nearly the same-indicating more uniform flow conditions. This behavior
was not indicative of the isothermal flow study conducted by Dunkle and

Davey.
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Since these results were unexpected, the test was conducted a second
time. Bubbles were a majér source of suspicion for producing complex
pressure drop characteristics, so special pains were taken to rule out
their presence. This included adjusting the flowrate to the maximum
and tilting the collector such that bubbles could be forced through the
system. After completing this task the flowrate was reduced and the test
repeated. Nevertheless, the results of the second test were still
nearly identical to the first. For example, the dependent variable
shown in Figure 20 for two flowrates (1.94 and 1.96 1bm/min) almost
coincided for the two separate rums.

The conclusion was simple: without turbulators the flow distribu-
tion was not uniform. The explanation, however, was not simple. For
instance, fluid flow calculations for an isothermal fluid like that shown
in Figure 19 show that the pressure drop along the tubes near the col-
lector inlet and exit regions become more exaggerated with increasing
flow and vice versa. Consequently, on a percentage basis, more flow
passes through the outer risers with respect to the center ones as
total flow increases. The reverse process occurs as the flowrate is
reduced. From this consideration one would expect the implied flow
distribution of Figure 20 to also show an increase in flowrate in the
risers farthest from the inlet under the increased flow conditons.

As clearly indicated in Figure 20, this expected effect did not
occur. The flow increased very significantly in the risers nearest
the inlet but did not increase at the opposite end as theory would
have it. It appecars another variable affecting pressure drop charac-
teristics besides those mentioned earlier came into play. It was theo-

rized that this pressure drop alteration came from natural convection
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Figure 21 Isothermal Flow Network Representation of the Collector

forces described earlier. It was also noted here that the average
total flow range per tube for this test was comparable to that in the
internal heat transfer coefficient test, so the operating points fell
well within the region of either free or mixed convection on Figure 13.

Hot water was pumped through the collector where it was subsequently
cooled. It follows that if convection played a role in affecting the
pressure drop, it would occur on the riser nearest the inlet because the
temperature is the greatest there. As the water moves further down the
headers and risers cooling takes place, temperature differentials drop,
and bouyancy forces decrease. So convection becomes less important as
the water proceeds along the tubes. This is illustrated by movement to
the left on Figure 13. Data taken from the internal heat transfer coef-
ficient test bear this out.

To further illustrate the condition, a pressure drop and flow eval-
uation model was developed by the investigator. It was designed to model

the collector risers and headers for isothermal flow. Figure 21 shows
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(b) Flow Distribution

4 8 12
Riser Number

the model network with the riser and header resistors.

Figure 22 Flow Distribution for Symmetrical and Reduced
Pressure Drop in the First Two Risers

For specified

resistor values, flowrate, and exit pressure, the flow distribution and

resulting junction pressures can be obtained by the method presented in

Appendix B.

For the special case where the upper and lower header re-

sistors are equal, and the riser resistors are also equal (but not neces-

sarily equal to the header resistors), the pressures will be related as

shown in Figure 19.

22,
with reduced pressure drops in the first two risers.

simulate the effect of frece convection aiding the flow.

The resulting flow distribution is shown in Figure

Also shown is the flow distribution for the same total flow but

This was intended to

When the pressure

drop was reduced in the first two risers there was a striking similarity
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Figure 23 Flow Distribution with Increasing Flowrate

with the flow distribution shown in Figure 20 for all flowrates less than
or equal to 4.44 1bm/min. Figure 23 shows changes resulting from pres-—
sure drop considerations alone when the total flowrate was increased.

Based on the summary of Metais and Eckert showing regions of mixed
and free convection, and based on correlations with the flow model, it
appears that free convection played a significant role in determining the
flow distribution of the collector as used by the investigator.

This effect is not anticipated, however, for collectors iIn an opera-
tional environment since fluid would be entering at a rclatively cooled

condition and would be hcated simultaneously and uniformly across the

——
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. absorber plate.

Under this condition the aiding flow situation would

probably tend to average out over the collector, resulting in a near

uniform flow condition. However, since uniform distribution was easily

disrupted by free convection effects or other unknown effects, it is

concluded that the headers are undersized.
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V Bond Conductance Test

The bond conductance is also a key parameter in the thermal per-

formance of a solar collector, but like the internal heat transfer
coefficient a point is ultimately reached where increasing values pro-

vide marginal to zero improvements in the collector efficiency factor.

IR YR

Whillier (Ref 15:95-98) studied the effect bond conductance has on the

PR

collector efficiency factor and showed that improvements beyond about

R L4

20 B/hr-ft-F are questionable.

SOOI TN

The geometry of the tube-fin connection is of practical interest
from the economical as well as thermal point of view. Whillier investi-

gated two types of fin tube clamps shown in Figure 24. The wired fin

[P

consisted of a .02 inch thick copper fin wrapped three quarters of the
way around a .83 inch diameter steel tube and pulled tight around
the tube with thin galvanized steel wires at two inch spacings. The

self clamping fin was constructed of .034 inch thick galvinized steel

(a) Clamped Fin (b) Wired Fin

(Ref 16:95-93)

Figure 24 Fin Clamping Techniques
Tested by Whillier
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bent such that the tube could be spring loaded into the assembly as
showm in Figure 24a.

The galvanized steel self clamping fin was tested twice-with and
without soldering. It was significant that sometimes the soldered bond
cracked immediately upon cooling due to thermal stresses. In fact,
Whillier pointed out that it was hard to prevent the cracking. This
points out one of the practical limitations of soldering.

The test showed that the self clamping fin had an average bond
conductance of only 3.4 B/hr-ft-F. Soldering improved the results sig-
nificantly, but Whillier was not able to obtain exact values from the
test.

The wrapped and wired copper fin was superior with bond conductances
being about 16 B/hr-ft-F. Whillier concluded that soldering was unnec-
essary provided the copper plate is wrapped aroung the tube and firmly
clamped at two inch intervals.

Kahn (Ref 6:148-151) tested three other configurations for bond
conductance. His apparatus consisted of three finned plates of galva-

nized steel each connected to a galvanized tube by one rf the following:

2.892 B/hr-ft-F
21.51 B/hr-ft-F
3.84 B/hr-ft-F,

(1) wired bond, c
(2) soldered bond, c
(3) Dupont Adhesive, C

b
b
b
Again it is seen that a soldered bond performs well, but it must be

pointed out that conventional soldering techniques and continued thermal
stresses encountered under operational conditions may render it imprac~
tical. The wired bond was well below the standards pointed out by
Whillicr, but Kahn only used six inch intervals for wiring where Whillier

did so at two inch intervals. The .02 inch thick copper fin is also a

very pliable material. Kahn did not specify the thickness of the fins
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Figure 25 Schematic of the Bond Conductance Test

Specimens and Thermocouple Locations
assessed in his paper, but unless it was thinner than .02 inch it cer-
tainly would be less pliable than the copper. Incidentally, since the
thermal conductivity of copper is around one order of magnitude greater
than galvanized steel, the thickness used by Kahn would have to be thick-
er than .02 inches to obtain comparable fin efficiencies with the copper
fin. Thus, the number of wire ties, tightness of the clamp, pliability
of the material, and construction detail all combine to define the bond
conductance value and the difficulty or ease of fabrication.

Three more configurations were tested in this investigation., One

was the clamped fin and tube; the other two were the woven fin and tube

configuration shown in Figure 25 with and without thermal grease.
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. Test Description and Procedure

The apparatus for the test was the same as shown in Figure 8 except
the test specimen was oriented horizontally. Like the internal heat
transfer coefficient test, a single tube and fin was tested. Bond
conductance was found by measuring the actual heat loss, the tube wall
average temperature, and the average fin base temperature. The locations
of the thermocouples are shown in Figure 25.

The bond conductance was computed according to:

W (t..-t_.)-Q
cb . P fi fo loss (17)
Y(twa - tfa)
where ta = average wall temperature
: tfa = average fin base temperature

Qloss = energy lost directly from the tube to the atmosphere

as defined in Appendix C

The heat loss term appearing in Eq (17) accounts for losses that
do not occur through the bond. This eperpy passes directly from the
exposed sections of the tube to the atmosphere and must be accounted for
in the calculation.

Each configuration was tested at two flowrates to obtain an average
value of bond conductance. In each case the system was allowed to run
until equilibrium was reached. The mass flowrate and temperatures were
recorded and the bond conductance computed. The woven fin configuration
was tested with and without the thermal grease to assess its contribution

to thermal performance.

Results

The experiment showed an average bond conductance for
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i Figure 26 Fin Efficiency Versus Fin Thickness :
H 1
i f
i a) clamped fin and tube, C, = 18.88 B/hr-ft-F f
3 b) woven fin and tube (no grease), Cb = 1,104 B/hr-ft-F
i
i ¢) woven fin and tube (grease), Cb = 1.57 B/hr-ft-F.
4
§ Thus, the clamped fin and tube performed comparably with the wired ¥
|
j clamping techniques reported by Whillier. But in his arrangement the
i tight bond was made possible by the thin, soft, and pliable copper sheet.
5. The thicker steel used in this investigation was much too rigid to con-
4
}
é sider the wiring technique used by Whillier.
% Since one strives for economy in collectors, steel fins make more
E sense to use, However, thicker steel is necessary to produce the com-
' parable fin efficiencies obtained with copper, and it can be more
]
difficult to install, Figure 26 makes the comparison. Using Eq (3)
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for the fin efficiency, the length has been taken as four inches, UL
as .664 B/hr-ft2-F, the conductivity of copper and steel as 220 and

26 B/hr-ft-F respectively. The comparison shows that steel thicknesses
greater than .05 inches are required to compete thermally with .02 inch
copper. Therefore, one has to choose some optimum thickness based on
local material prices. And since increased steel thicknesses could re-

sult in degraded bond conductance, one has to consider this problem as

well.
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VI Long Wavelength Transmittance Test

During the last decade much attention has been given to finding a
thermally suitable replacement for glass in solar collectors. This is
due primarily to the weight, the ease with which it breaks, its high
reflectivity unless treated, and it is hard to cut and handle. Fiber-
flass reinforced polyester resin materials such as Kalwall or other
types of plastics on the other hand are very light-weight, hard to break,
thermal shock resistant and easy to cut and handle. These advantages
help minimize the maintenance and installation costs. Their main dis-
advantage, however, is transmittance in the far infrared range. Plastics
also tend to deteriorate under ultraviolet radiation.

As the temperature of a blackbody increases, its emissive power also
increases according to the spectral radiation distribution given by

Planck's law (Ref 10:357-358):

Zﬂcl

i A exp(c,A) - 1]

b (18)

first constant, .18892E8 B—um“/hr-ft?

second constant, 25898 ym-R

where

a0
N e
n n

A = wvavelength ¢m

T = temperature R

ebl = emissive power of a blackbody at wavelength A,
B/hr-ft2-um.

By using radiation tables it can be shown that about 93 percent of
the sun's energy is radiated in the small wavelength region between zero
and two micromcters. Thus to collect energy a collector's cover system

must transmit in this range. The absorber plate temperature on the other

A a8 :&t-u»au.&Amhh.—-&‘.;
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hand is characteristically less than 200 F and according to Eq (18) ra-
diates most of its energy between two and forty micrometers. Therefore,
in order to trap the energy received from the sun, the cover system should

be opaque in this region.

Test Description and Results

This test was very simple to conduct. It was required to measure
the long wavelength transmittance of the Kalwall cover. All that was
necessary was the Kalwall cover, an isothermal flat plate with a known
temperature, a thermopile, and potentiometer.

Heaters in the flat plate were adjusted to give a plate temperature
of 154 F. The thermopile window was removed to increase sensitivity and
the shutter opened to .3 centimeter.

The transmittance was measured by taking two readings with the po~
tentiometer. One reading was made with the Xalwall between the plate
and thermopile. The other reading was made without the Kalwall. The
thermopile and flat plate remained stationary so that the ratio of the
two potentiometer readings would give the transmittance of the cover.
Care had to be taken not to leave the Kalwall in position too long be-
cause it would absorb radiation, increase in temperature, and cause
the potentiometer reading to change. Thus, the reading had to be made
rather quickly.

The test was actually conducted on .025 inch thick Kalwall and
Visqueen material. The Visqueen was nuch thinner and more flimsy than
the Kalwall but had about the same degree of opaqueness to visible light.
The results of the test are presented in Table I.

A constant 154 F plate temperature was considered satisfactory
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Table I Long Wavelength Transmittance Test 1
Results of Kalwall and Visqueen b
4

Potentiometer Reading (mv) :
Wich Without T
] Cover Cover
: Kalwall 2. 390. .051
1 Visqueen 280. 390. 717

because long wavelength transmittance characteristics do not vary much

with temperature. Whillier (Ref 15:148-151) conducted a similar test

for Tedlar plastic material and found that long wavelength transmittance

properties varied only two percent under a temperature range of 0-200 C.

Assuming Kalwall has similar characteristics (additional tests could
easily be conducted to evaluate the long wavelength transmittance pro- '$
perties at various temperatures), the value reported in Table I is

probably satisfactory for expected operational temperatures; and like g

glass, Kalwall is essentially opaque in the long wavelength region.




VII Overall Loss Coefficient-Heat

" ‘'Removal Factor Product Test

The instantaneous collector efficiency can be defined as the instan-
taneous useful energy gain, Eq (1), divided by the instantaneous

energy available,

n = (Tu)FR - ULFR(tﬁ - tm)/I (19)
The term, (tfi - tw)/I, is commonly used as the independent variable,
so the ULFR product is the slope of the efficiency curve. By measure-

ment of the ULFR product some insight is gained about the expected ef-
ficiency of the collector. The term, (f&)FR, is the "Y" intercept of
the curve and represents the maximum attainable efficiency possible.

To obtain the best possible performance with the collector both
the efficiency and the useful energy gain should remain high. A small
overall loss coefficient and high heat removal factor ensures this cri-
teria is met.

Both of these terms vary over the normal operating range though, so
the slope can be expected to vary. Because of increasing losses with
plate temperature the slope usually increcases negatively and the effi-
ciency begins to fall more rapidly as the mean plate temperature rises.
But as discussed earlier and especially for this test where the operat-
ing temperatures were kept between 123-142 F this variation is very wecak.
Because of this fact a study of the hcat removal factor as a function of
the flowrate and collector configuration was permitted, Other variables

such as the overall loss coefficient, collector efficiency, and col-

lector arca which make up the configuration were nearly constant and
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served to define the maximum attainable value of the heat removal factor
for each configuration.
Since hot water was pumped through the collector in lieu of irradi-

ating it, the ULF product was simply computed by equating the useful

R
energy gain with zero irradiation, Eq (1), to the measured enthalpy

change of the water:

wcp(tfi - tfo)

Ac(tfi - Q,)

U Fp =

(20)
After the ULFR product was measured it was possible to determine each
term as well as fin efficiency, F, and the collector efficiency factor,
F', separately. Two methods were used to reduce the data. One method
used the expression for the mean plate temperature, i.e., Eq (11). From
Eq (6) the other method found the product of ULF' given ULFR and solved

for the overall loss coefficient, U Both methods were iterative.

L
The test was conducted on the following four configurations:
(1) Clamped fin with turbulators

(2) Clamped fin without turbulators

(3) Woven fin with turbulators

(4) Woven fin without turbulators.

Test Description and Procedure

The test set up was the same as that used in the flow distribution
test for the fully assembled collector. A single thermocouple was at-
tached midway and on the underside of each tube for all configurations.
The readings from these twelve thermocouples were arithmetically averaged

to compute an initial guess for the mean plate temperature. (This is
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described in more detail later.) Mixed fluid temperatures were also re-

corded for the inlet and exit.

Results

A variety of information was extracted from this test. After meas-
uring the ULFR product for each operating condition, it was possible to
compute the fin efficiency, collector efficiency factor, and the heat
removal factor. These variables, the overall loss coefficient, and the
mass flowrate have been summarized in Tables IT and III for all four
configurations. The heat removal factors have been shown as a function
of flowrate and configuration in Figure 27. A single operating point
from reference (5) has been included on Figure 27a for comparison.

The results using both reduction methods described earlier have
been presented. Although confidence in one of the methods is not high,
it is apparent that the clamped fin configuration is superior to the
woven fin configuration. At the recommended flowrate of 3.3 lbm/min
for instance, the clamped fin configuration had an approximate '3 per-
cent improvement in the heat removal factor. Also shown in Figure 27a is
the maximum possible value of FR for this collector. This curve assumes
infinite bond, internal heat transfer coefficient, and tube wall con-
ductances. The difference between this curve and the curve generated

without turbulators represents the improvement margin for the clamped
fin configuration. The heat removal factor was computed with an overall
loss coefficient of .664 B/hr-ft2-F.

Figure 27a shows an approximate 2.5 percent improvement margin avail-
able for the collector without turbulators. When included the turbulators

provide a nominal onc percent additional improvement in the heat re-
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Comparison of the U

TABLE 11

LFR

Test Results for the Clamped Fin
and Tube Using Data Reduction Methods 1 and 2

Method 1
Without With
Turbulators Turbulators
W | .641 1,698 1.937 2.667 4.437 6.708 2,0 4.135
UL <525 .602 .578 .811 .926 1.317 .715 1.0
L‘ F | .952 .946 .948 .928 .919 .889 .936 .913
F' .931 .921  .924 .897 .885 .844 .919 .896
FR .833 .878  .888 .862 .861 .824 .876 .868
ULFR .437 .529 .513 .699 .797 1.085 .626 .872
tpm 100 110 111 119 125 130 130 134
tes 123 136 131 136 132 132 135 137
Method 2
Without With
Turbulators Turbulators
W .641 1.698 1.937 2.667 4.437 6.708 2.0 4.135
UL .632 .652 .646 .651 .648 .647 .653 .656
F . 943 .941 .942 .941 .942 . 942 .941 . 941
F' .918 .916 .916 .916 .916 .916 .925 .929
FR .805 .869 .876 .886 .898 .904 .885 .909
ULFR .509 .567 .566 .577 .582 .585 .578 .597
tpm 116 131 127 130 128 127 131 134
tey 123 136 131 136 132 132 135 137
W - 1bm/min tpm -F
U, - B/hr-fe?-F teg - F
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TABLE II1

Comparison of the ULFR Test Results for the Woven Fin

and Tube Using Data Reduction Methods 1 and 2

Method 1
Without With
Turbulators Turbulators
W [1.687 2.75 4.28 7.45 9.0 1.5 2.56 5.96
UL .636  .681 .942 1.504 1,473 1.121 1.022 2.156
F .937 .932 .909  .864 .866 .894  ,903 .818
F' .815 804  .748 .652 .656 .723 744 .587
FR 779,781 .73 .639  ,646 .668 712 .569
ULFR <495 .532 .688 .961  .951 749,728 1.227
tpm 121 121 128 135 134 129 131 135
tfi 141 142 140 140 138 134 135 138
Method 2
Without With
Turbulators Turbulators

W [L.687 2.75 4.28 7.45 9.0 1.5 2.56 5.96
UL 651  .652  .647 .640  ,639 .634 .638 .632
F .935 .935 .935 .936 .936 .937 .936 .937
F' .811 .811  ,812 .814 .814 .823 .823 .828
FR .775 .788  .797 .805 .807 .781 .798 .817
ULFR .504 514  .516 .515 .515 495 .509 .516
tpm 130 130 127 122 121 118 121 117
tfi 141 142 140 140 138 134 135 138
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moval factor. Section I1I alluded to this marginal return when the
effect of the internal heat transfer coefficient and bond conductance
on the collector efficiency factor was demonstrated. Recall that im~
provements in these variables above 50 B/hr~ft2-F and 20 B/hr-ft-F
respectively effected minimal jmprovement on the collector efficiency
factor. Figure 27a shows there is little impact on the collector heat

removal factor as well.

Discussion
As pointed out earlier two methods were used to compute the fin ef-
ficiency, collector efficiency factor, heat removal factor, and the over-
all loss coefficient for each operating condition where the ULFR product
was measured. For reasons pointed out later, the results of the first
method were not good. The heat removal factor calculated by this method
is shown in Figure 27b. Other variables are listed in Tables II and III.
The method for reducing the data was very simple. First, Eq (6)
was solved for the product of the overall loss coefficient and col-
lector efficiency factor:
ch
ULF' - - r Loge[l - ULFRAC/WCJ (21)
c
The term on the right hand side of Eq (21) was set equal to a constant
depending on the measured quantities. Having determined the inter-
nal heat transfer coefficient énd bond conductance from previous tests,
the overall loss coefficient was computed by expressing the collector
efficiency factor in terms of the overall loss coefficient and solving

Eq (21) iteratively. Afterwards, the fin efficiency, collector effi-

o=

RSty N ey
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iciency factor, and heat removal factors were found from Eq (2), (21),
and (6) respectively.

The second method was equally simple. First, it was assumed that
the predicted overall loss coefficient as shown in Appendix D (Figure
D-1) was correct. Assuming a plate temperature-the first guess being
the arithmetic average of the twelve thermocouple readings-an overall
loss coefficient was computed. Then as in the first method the fin
efficiency, collector efficiency factor, and the heat removal factors
were computed. Using Eq (11) and the measured energy exchange, Qu’
a8 mean plate temperature was computed. The process was repeated until
no change in the mean plate temperature occurred. Sample calculations
are provided in Appendix D.

A comparison of Figures 27a and b shows a significant difference in
the results of the methods. A likely explanation comes from unsteady
conditions which were present throughout the test. The inability to
obtain a truly steady state condition was evident from the onset of the
experiment and was the reason for including the submersible heater and
insulation around the flexible hose. The problems obtaining steady state
conditions are summarized in Figure 28 for two flowrates which are about
the same (4.135 1bm/min versus 4.5 lbm/min). 7The results are shown with
and without the submersible heater and insulation. Data was taken over
a 4.8 hour period without the heater. The ULFR product was seen to vary
from .684 - .972 B/hr-ft2-F (a 42 percent variation). When the heater
and insulation were added the variation was reduced to 12 percent with
values of the ULFR product varying between .816 - .915 B/hr-ft2-F. The
figure shows that the collector temperature difference, (tfi - tfo)’ was

a little more uniform during the test with the hecater; however, a signif-
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icant temperature difference decrease was still prevalent.

Also plotted on Figure 28 is the collector inlet temperature versus
time. Again, the heater and insulation addition significantly reduce
the slope, but it is evident that steady state was still not achieved-
even after more than four hours of operation at constant mass flowrate.

Small increases in the recorded ambient temperature were also noted
throughout the test, For instance, the ambient temperature increased
from 66 F to 68.5 F over the 4.8 hour period for the run without the
heater. This increase was typical throughout the test. However, every-
thing else being constant, this variation resulted in only a 3.8 percent
change in the ULFR product. Therefore, changes in the ambient tempera-
ture do not account for the large variations in the ULFR product reported
in Tables II and I11. Likewise, since the flowrate was constant and
the laboratory provided a no wind condition, the most likely explanation
for the varying overall loss coefficient as computed by the first method
stems from unsteady effects.

To explain the effect assume for the moment that the inlet and
ambient temperatures remain fixed and the flowrate is allowed to increase.
It can be deduced that the mean plate temperature will rise at a rate
prescribed by the actual heat transfer characteristics and the thermal
capacitance of the collector. Because of the thermal capacitance the
actual mean plate temperaturc lags the steady state value. Consequent-
ly, the outlet tcmperature also lags the steady state value and results
in higher ULFR values according to Eq (20).

Since more heat transfer occurs at higher flowrates more time is

required to achicve steady state conditions, and recording data consist-

ently too early (this was done at approximatcly two hour intervals) after




T

each flowrate change would result in progressively larger errors for each
point. This is precisely the effect shown in Tables II and III where

increasing values of the overall loss coefficient and the U product

LFR
are noted for method 1.

The result using method 2 better illustrates the expected outcome
of the test, but for two reasons is nothing more than a theoretical
prediction of the heat removal factor with flowrate. The first and fore-
most reason is that a predicted value of the overall loss coefficient was
used. Second, even though the measured enthalpy change was used in the
calculations and reduced the mean plate temperature below that of the
fluid inlet, the change in the overall loss coefficient was negligible
from one iteration to the next. Therefore, the results presented in
Figure 27a behave as a theoretical prediction based on the overall loss
coefficient calculation and as such contribute little to this experimental
investigation. However, the information shown is not without merit.

Work on this collector conducted by Groves (Ref 5) established the
overall loss coefficient from which Figure D-1 was derived. Furthermore,
work completed under this investigation defined the internal heat trans-
fer coefficient and bond conductance for each of the other configuations
as well. So, Figure 27a is, after ali, a complete and accurate assess-

ment of the heat removal factor for all four of the tested configurations.
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VIII Summary

This investigation dealt with several parameters defining the thermal
performance characteristics of a liquid heating-flat plate solar collec~
tor. These were:

(1) Internal heat transfer coefficient

(2) Flow distribution

(3) Bond Conductance

(4) Long Wavelength transmittance characteristics

(5) ULFR product
Two types of absorber plates-clamped and woven fins-were tested
for bond conductance characteristics. The effects of turbulators on the

internal heat transfer coefficient were also examined.

Internal Heat Transfer Coefficient

The mean Nusselt number varied between 6.68 and 7.7 for the tube
without turbulators. This corresponds to internal heat transfer coef-
ficient values between 98-114 B/hr-ft2-F for water at 150 F.

Mean values were much higher with turbulators. They ranged from

9,76-20.07 for flowrates between 4.86-20.45 1lbm/hr/tube. This resulted

in heat transfer coefficients between 254-522 B/hr-ft2-F,
Only an approximate one percent improvement in the heat removal
factor was obtained when turbulators were included. So it was concluded

that turbulators did not significantly improve overall performance.

Flow Distribution

The use of turbulators helps ensure a more uniform flow distribution
for this collector. With the turbulators removed and with hot water pump-

ed through the collector a greater portion of the flow was apparently
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passing through the first risers. As the flowrate was increased flow
in each successive riser starting with the inlet, also increased. Only
under the highest flowrate of 6.7 lbm/min did the flow appear to be
uniform.

Since the tubes will be heated uniformly under solar irradiation-
assuming no blockage of tubes-the flow distribution will probably be
adequate even without turbulators. However, with the small 3/4 inch
diameter headers, it was shown that a maladjusted flow pattern was easily
achieved. Therefore, in order to reduce the risk of unbalanced flow,

it was concluded that header diameters should be increased.

Bond Conductance

The clamped fin configuration resulted in an average test value of
18.88 B/hr-ft-F. This value was considered satisfactory since it was
shown that higher values resulted in marginal thermal performance
returns.

The woven fin was unacceptable. The average test value result was
1.104 B/hr-ft-F. With a generous application of Insulgrease this value

was improved to 1.57 B/hr-ft-F.

Long Wavelength Transmittance Characteristics

The Kalwall material which was .025 inches thick was essentially
opaque to far infrared radiation. The measured value was 5.1 percent

which was considered excellent.

ULFR Product
The test results were inconclusive since steady state operating
conditions were never achieved. However, based on a predicted value

of the overall loss coefficient which compared quitc closely to an
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experimentally determined value from previous work (Ref 5), a summary

study of the heat removal factor as a function of flowrate was made.

This summary compared the clamped and woven fin configurations and also

included the effects of turbulators. b'
The results of the summary showed the clamped fin configuration

performed 13 percent better than the woven fin configuration. The

use of turbulators only increased the heat removal factor by a nominal

one percent.
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From the results of this investigation the following conclusions

IX Conclusians

are drawn:)

(1)

@

> (3)

B0)

> (5)

~(6)

The use of turbulators greatly enhanced the internal
heat transfer coefficient, but unfortunately, made

little difference in the overall performance.
4

The use of turbulators improved flow uniformity by

increasing the pressure drop in the tubes.
2

The diameter of the headers should be larger to help

ensure flow uniformity. This is especially true for

low flowrate conditions such as those tested.
2

The bond conductance for the clamped fin was competitive
with soldering since little gain in performance is real-
ized after a value of 20 B/hr-ft-F is achicved.

2

The bond conductance of the woven fin configuration was

unacceptable.
P S D

Kalwall material was essentially opaque to far infrared

radiation.
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12.
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Appendix A

Internal Heat Transfer Coefficient

Included in this appendix are the derivation of Eq (12) and (13),

water property assumptions, sample calculations, data, and results.

Derivations

A description of the local bulk temperature along the tube is neces-
sary to compute the local Nusselt number. The temperature change was
assumed to be an exponential function, and it w;s further assumed that
the fin loss coefficient was constant,

Writing an energy balance for a differential element results in

dt

wcp i = hx‘n‘Dh(tw - tf) = UL(tm -t (A-1)

f)

where x has been taken as the tube direction, t, is the local wall tem-

perature, L is the width of the fin, t_ Is the local bulk temperature,

f

and U is a constant fin loss coefficient. The boundary condition is

t, =t

£ £i at x =0

The solution of this is Lq (12) where

uL. _ - Loge tfo ~t

— © (A-2)
wC b ¢ t ~t

P fi ©

for Y equal to the tube length. The local Nusselt number is simply
defincd by equating the last two terms of Eq (A-1) and solving for the

local heat transfer coefficient,




”"!hww s e o —— g MRNNEM p—— ORI T . o .

b
Property Assumptions ﬁ

The viscosity, Prandtl number, and thermal conductivity were assum-

ed to vary with temperature alone according to

1bm
= - 2 - - -
,,[hr_ft] (7.85077E-5)T (3.37417E-2)T + 4.346 (A-3)
Pr = (2.0575E-4)T2 -~ (8.9214E-2)T + 11.4927 C (A-4) }:
£
+ -._.E_— — "
k[hr-ft-] = a Tk + 2,13 + agT2 + a,T, + ag (A-5) 4
where a = -3.8228E-12 ﬁ
i5

a, = 1.2059E-8
a3 = -1.5038E-5
a, = 8.6283E-3
ag = -1.495

T = degrees F
T, = degrees R

{ In the calculation of the Grashof number |

1 B 4+ 2CT R
8[.1-‘] = - TiET 4o T in degrees F (A-6)
1bm
ol—=| = a;T% + a,T3 + a,T2 + a,T + ag (A-7)
ft3 '
where a; = -1.8182E-10

| a, = 5.425E-7

ay = ~6.4108E-4

a, = 3.2185E-1
ag = 5.2289

A = 62,5375

B = 1,6521E-3




¢ = -7.093E-5
T = arithmetically averaged bulk temperature in

degrees R except as noted

Sample Calculations

The inside diameter of the tube was measured at 5/16 inch. The
turbulator dimensions were taken as .025 inch thick with the width equal
to the inside diameter of the tube. This resulted in hydraulic diameters
of .02604 and .014755 feet without and with turbulators respectively.

The local wall temperature was measured at eight equally spaced
stations along the tube. The inlet and outlet temperatures were fluid
bulk temperatures.

This sample calculation compiles the local Nusselt number at station
2 for the first set of data (see Data and Results this Appendix). Fol-

lowing that is a calculation of tlie mean Nusselt number:

Bulk Fluid Wall Temperature
Station Temperature (least sauares)
1 159.39 F
2 152,79 144.93 F
3 140.95 132,37
4 130.73 122.51
5 121.9 114,81
6 114,27 108.73
7 107.69 103.73
8 102.0 99,27
9 97.09 94.79
10 94.89
where ambient temperature = 66 F
flowrate = 4.8601 1bm/hr

hydraulic diameter = .014755 ft
86.292 ¥
u

Reynolds number




Lo o

UL _ -log_[ 94.89 - 66
WCP 4 159.39 - 66
= ,2933 ft~1
t = (159.39 - 66)exp(-.2933x) + 66
x = 3/12 feet for station 2
x = 9/12 feet for station 3, etc.
t = 152.79 F
k= a1(612.79)I+ + 32(612.79)3 + 33(612.79)2
+ a,(612.79)1 - 1.495
= ,3812 B/hr-ft-F
UL _ .2933(4.8601)(1) _
kr (m) (.3812) = 1.1903
Nu = 1.1903(159.39 ~ 66)exp(-.2933x)
X (159.39 ~ 66)exp(-.2933x) + 66 - 144.93
Nu = 13.15
x

The experimental mean Nusselt number is calculated as follows:

hmDh
Num = (A-8)
where UL(t -t )
h © f avg (A-9)

For the data shown

moaD(tony avg = °f avg

= 122.17

tf avg
115.14

tvall avg -

kavg - 3717

P
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(66 - 122.17) -

Nu = 1.2207
w (115.14 - 122.17)

"
Ne = 9.75 0]
m

The above average properties were used when correlating data with Thomas'

and Oliver's equations. In addition, the Graetz number was defined as

Gz = WC /kY
P

where Y is the length of the tube. The tube hydraulic diameter was used

in the Grashof number.

Data and Results

This section contains a listing of the results. The first four

pages are data for tubes with turbulators. The remaining four data
pages are without turbulators. The wall temperatures are predicted
using a least squares curve fit of the recorded temperature data shown
above the results on each page. Appearing just below the station re-

N

sults is the average viscosity based on the average bulk and wall tem-

peratures respectively. Average values of Reynolds and Prandtl num-

bers as well as average wall and bulk temperatures are given. Finally,
mean values according to Oliver's, Thomas', and experimental results

are shown.
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Appendix B

" 'Flow Model and Data

A computer program was written to solve for the flow distribution
in the collector plumbing. As seen by Figure 21 there are twelve risers
with twelve resistors. The headers have eleven resistors each. In the
simplest form the flow and pressure drop are related by an equation of
the following form:

AP = RuF (B-1)

Specifying the constants R and E the pressure drop can be found along
the tube. Furthermore, as it is true for the electrical analog where
the sum of the voltages equals zero in a loop, the sum of the pressure
drops in a loop equals zero for fluid flow problems.

This was the fundamental principle of the flow model. Thus, spec-
ifying the constants and the total flowrate, the program adjusts the
flows such that the pressure drop around each loop equals zero. The
solution is then obtained. A listing of the program and sample output
is included in this appendix.

The data used to generate Figure 18 and 20 was simply flowrate and
temperature measurements. This dataAis listed in Tables B~I and B-II

for the collector with and without turbulators, respectively.

The input data to the computer program is free format. Table B-III
explains the input data. Following that table is a program listing and

sample output.




Table B-1I  Temperature Measurements for Tubes
With Turbulators (Clamped Fin)

in
T1

T2
T3
T4
T5
T6
T7
T8
T9
T10
T11

T12

Tout

W (1bm/min)

2.0 4,125
137.46 135.4
130.6 131.1
132.04 132.4
132.04 132.3
131.5 132.2
132,17 132.3
131.5 131.5
132.17 132.3
132.04 132.4
132.69 133.2
131.78 132.5
131.4 132.2
127.8 139.1
130.4 131.8
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Table B-III Flow Model Input Data

Card # Data Comment
1 1., 1500, 2
2 4. Flowrate (1bm/min)
3 .10375, .1017E-2, .1017E-2
*
*
* Constant, R, for the risers,
* upper and lower headers
* respectively in the equation
* AP = RW"
%
*
14 .10375, .1017E-2, .1017E-2
15 1.6036, 2., 2.
*
*
* Constant, E, for the risers,
* upper and lower headers
* respectively in the equation
* AP = RW
*
*
26 1.6036, 2., 2.
27 0. Exit pressure
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Appendix C

" 'Bond Conductance Test

Kahn (Ref 6) evaluated the bond conductance of several materials
using a simple indoor calorimetric test from which this test was derived.

From Figure C-1 it is clear that the energy exchange can be written as

follows which considers a fin-tube assembly receiving energy by radia-

tion:

LIS M e

g

Qu = ch(tw - tf)

Cb = bond conductance (kb/s)
Y = length of fin-tube assembly

k = thermal conductivity.
This equation assumes negligible heatbloss by radiation, conduction, and
convection from the underside of the tube. Therefore, all that is
necessary to measure the bond conductance is to measure the flowrate,

temperature difference between the inlet and exit, and temperatures

shown in Figure C-1.

f
i
¢
i
{
Y
;
b
g
3
]
t

twa - average wall temperature
t a — average fin base temperature

Figure C~-1 Clamped Fin and Tube Arrangement




The test in this investigation was slightly different. Hot water
was pumped through the system and no insulation was used to prevent
heat loss from the tube to the atmosphere. Therefore, it was necessary
to modify Eq (C-1) to account for this additional heat loss.

As discussed in Section III for the internal heat transfer coef-
ficient test, high flowrates through the tubes make it possible to
assume a linear wall temperature. This being the case the additional
heat loss may be approximated by Eq (C-2):
aDY

QlOSS g—hj22¥(twa - tﬂo) + OT(twa - tﬂ ) (C-Z)

vhere t. is the ambient temperature. The tube fits deep enough into
the fin trough that free convection flow characteristics for heated
plates facing downward probably more nearly typify conditions than flow
around a cylinder, so the external heat transfer coefficient is given by

(Ref 14:83):

Nu = ,27(GrPr)-25 (c-3)

vhere the characteristic dimension has been taken as the fin width of
four inches. Also, Eq (C-2) assumes blackbody radiation which tends to
put a conservative estimate on the computed bond conductance.

Referring to the data in Table C-I, the average tube wall tempera-
ture, twa' is 119.53 F for the clamped fin of run number one. The
ambient temperature, t., is 52.01 F. With these values the calculation

of the bond conductance is as follows:

e R R

S




o i s

2
“er =P BB - &3
uz wa [
X = 4 inches

Pr = .72
Nu = 12.78
h = .57 B/hr-ft2-F

- 37834 (119,53 - s2.01)

Q
loss  (8)(12)(2)

4 (HTL4E-B(M) (3) (4) 549 53
(8) (12) (2)

7.56 + 14.83

2?.39 B/hr

Qu B Qloss
Y(tw - tfa)

%

a

= "cp(tfi = teo) T Qg

Y(twa - tfa)

o +475(60)(129.98 - 121.59) - 22.39
4(119.53 - 116.73)
= 19.32 B/hr-ft-F

The experimental set up was run twice with the woven fin as Table C-I
shows. The purpose was to compare for the effectiveness of the thermal

grease under that type configuration. The results show minimal improve-

ment with the grease.

100

- 512.01%)

FuBO! v 2} s




/
i
;
L

Y o T TR T

?sB31H YITM 2qnL pue uUfj uaaoy (
£8° 98 Z1°98 £5°08 62°€9
69° 00T 9°€Tl %€° 10T 9 T1T 28°821 et
LTget z8'vel v LT 81°82T LT TET 298" z
8¢° 28 82°¢8 LL 8L 66°19
: 81°96 L2° 101 12° 16 £L°C0T v 61T Lt
1 €S°STT  80°LIT 99°611 €021 IR TA 9z8¢"* 1
98¥91H INOYIFM 2qN] pue U] udaoM (q
8¢° 78 €L°68 LL°8L 71729
20°¢6 28°911 80°66 LY° 60T L1721 LT°1
] 9 LT €9°821 10°1€1 8L°TEI 88° €1 29¢8° z-
w 82°6L 15°28 8€°8L 19°19
8€°06 $6°80T S1°66 7° €01 69°021 . 90°1
j €8°LTT  9L°SII 8€°7Z1 v €T £9°821 89z2° 1
‘
3 83TNsay aqny pue urj paduer) (®
. 1€° 201 £°00T 66° 10T 92°0S
v . 29°8TT  (1°021 vE" 2z 26°€21 10721 vy 81
: 65°TZT  0£°%ZI 28" 921 £6°L21 99°1€T 856" z
ST°66 S1°66 ¥9°00T 10°2S
ﬁ 80°€TT  6L°STI 11°8T1 76°6IT - 6S°TZT Z6°6T
£$°STT  T0°6TI 96°0Z1 10°€2T 86° 621 sLy* 1
Z1L 61 9L €1 (@-33-1q/9) Y
Y11 1L 81 SL ZL upw/uqy uny
€I 0TI L1 vl 1L 238IMOT4

»

(1 Sop-soanjvaadwal) s3Tnsay

389 20UBIONPUO)H puog I-) ITqEL

101




o et I B

e oguackii. aniid R U

Appendix D

" 'Overall Loss Coefficient

The overall loss coefficient may be calculated from classical tech-
niques although the procedure is rather lengthy. This section summarizes
the ways heat is lost and presents the methodology for computing the
loss coefficient. At the end of this section a graph has been presented
showing the overall loss coefficient as a function of plate temperature.
Back, edges, and top losses all make up the overall loss coefficient
and strictly speaking each is a function of the plate temperature, but
the dependency is very weak. Therefore, Figure D-1 assumes the overall

loss coefficient is a function of temperature only through the top loss

coefficient.

Back Losses

Heat losses start at the bottom of the plate, travel through a
5 inch airspace, through 3.5 inches of insulation, .25 inches of ply-
wood, and then to the atmosphere. Thus, convection and radiation is
considered between the bottom of the absorber plate and the top of the
fiberglass insulation. Conduction occurs through the insulation and
plywood. Finally, convection and radiation to the atmosphere occurs.
Assuming the following quantities it can be shown that the back

loss coefficient calculations result in a value of .0864 B/hr-ft2-F:

kinsulation = ,028 B/hr-ft-F
kplyvood = ,07 B/hr-ft-F
p1ate - -89 ‘
€4nsulation -8 }
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tp = 135 F (plate temperature)
Atp-insulation =25F
h, = 2 B/hr-ft2-F

External radiation is neglected.

Edge Loss
For this calculation it was assumed that heat is lost out the edge

through a three inch vertical pine wood surface one inch thick and

one inch of insulation. The edge area was computed as 4.22 square

feet, and the collector area was computed as 17.758 square feet. Using

a conductivity of .079 B/hr-ft-F for pine wood, the edge loss comes to

.058 B/hr-ft2-F.

Top Loss Coefficient

A computer program was written to model Klien's equation (Raf 2:133)
for the top loss coefficient as a function of plate temperature. The
tilt angle was taken as 50 degrees, the number of covers was two, the
plate and glass emissivities were .89 and .88 respectively, and the
wiﬁd velocity was taken as zero. A value of 2.0 B/hr-ft?-F was used for
the external heat transfer coefficient. The values of the back and edge
overall loss coefficients were simply édded to the resulting top loss
coefficient at every plate temperature to obtain the collector overall
loss coefficient. The result is given for two ambient temperatures in

Figure D-1.
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Appendix E

UL?R'Product
Two methods were used to compute the overall loss coefficient, fin
efficiency, collector efficiency factor, and the heat removal factor

from measured data. The method is outlined and sample calculations are

provided here.

" Method 1

Taking a flowrate of .641 lbm/min from Table II, the measured ULFR
product was .437 B/hr-ft2-F. From Table B-II the inlet and exit tempera-
tures are 123.0 F and 112.72 F respectively. The average of these gives
a thermal conductivity of water of .37 B/hr-ft-F. Using a mean Nusselt
number of 7.21 the resuiting heat transfer coefficient becomes

102.4 B/hr-ft2-F. (This mean Nusselt number was used for all flowrates

without turbulators.) Using a value of 17.758 ft2 of collector area

and a constant specific heat of water of 1 B/1bm-F, Eq (21) results in
. =
ULP .4881

Substituting the expression of F' from Eq (4) into the above and using
the following quantities, an equation with the overall loss coefficient

as the only unknown results:

§ = .035 inches

k = 26 B/hr-ft-F

D = 7/16 inch

L = &4 inches
cb = 18.88 B/hr-ft-F
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4 + .0574 3

tanh ‘539(”1.)'5
U, [-4375 + 3.562

o5
.539(UL)

The iterative solution to Eq (E-1) is UL = ,525. Subsequently, F = .952,

F' = ,931, and FR = .833. d

" Method 2
The average plate temperature from Table B~II is 100 F. Using Fig-

ure D-1, the overall loss coefficient is computed to be .608 B/hr-ft2-F.

The enthalpy change divided by the collector area gives

TN S

Y = 641(2) i _
Ac 7,758 (60) (123.02 - 112.72) = 22.307

Using Eq (10) and (11) the mean plate temperature is given by

(= 1207 _wll Ty l
t
ULFR F

Assuming U, = .608 B/hr-ft2-F the following quantities result:

F = .945
F' = .922
F, = .813

R
Recomputing the mean plate with these quantities gives 116.4 F. Repeating

the process a second time is quite sufficient. The ultimate solution

becomes

v, - +632 B/hr-£ft2-F

{ F = ,943
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Data

The required data for the clamped fin (Table II) is given in

Table B-I and B-II. The woven fin data is summarized in Table E-I.

Table E-1I Flowrate and Temperature Measurements for Tubes
With and Without Turbulators for the Woven Fin

.918

.805

.509 B/hr-ft2-F
116 F

Without Turbulators
Flowrate
(1bm/min) Tin Tout Tamb
1.687 141.3 135.4 73
2.75 141.7 137.7 72
4.28 139.8 136.6 72
7.45 139.8 137.2 72
9.0 138 135.9 72
With Turbulators
Flowrate
(1bm/min) Tin Tout Tamb
1.5 134.4 124.2 68
2.56 135.4 129.7 68
5.96 137.9 133.6 68
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